137 research outputs found

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Cooperative Beamforming Design for Multiple RIS-Assisted Communication Systems

    Full text link
    Reconfigurable intelligent surface (RIS) provides a promising way to build programmable wireless transmission environments. Owing to the massive number of controllable reflecting elements on the surface, RIS is capable of providing considerable passive beamforming gains. At present, most related works mainly consider the modeling, design, performance analysis and optimization of single-RIS-assisted systems. Although there are a few of works that investigate multiple RISs individually serving their associated users, the cooperation among multiple RISs is not well considered as yet. To fill the gap, this paper studies a cooperative beamforming design for multi-RIS-assisted communication systems, where multiple RISs are deployed to assist the downlink communications from a base station to its users. To do so, we first model the general channel from the base station to the users for arbitrary number of reflection links. Then, we formulate an optimization problem to maximize the sum rate of all users. Analysis shows that the formulated problem is difficult to solve due to its non-convexity and the interactions among the decision variables. To solve it effectively, we first decouple the problem into three disjoint subproblems. Then, by introducing appropriate auxiliary variables, we derive the closed-form expressions for the decision variables and propose a low-complexity cooperative beamforming algorithm. Simulation results have verified the effectiveness of the proposed algorithm through comparison with various baseline methods. Furthermore, these results also unveil that, for the sum rate maximization, distributing the reflecting elements among multiple RISs is superior to deploying them at one single RIS

    Real-Time Pricing Strategy Based on the Stability of Smart Grid for Green Internet of Things

    Get PDF
    The ever increasing demand of energy efficiency and the strong awareness of environment have led to the enhanced interests in green Internet of things (IoTs). How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under the constraints. In addition, simulation results show the efficiency of the proposed strategy

    Evaluating Future Water Availability in Texas through the Lens of a Data-Driven Approach Leveraged with CMIP6 General Circulation Models

    Get PDF
    Climate change is escalating the frequency and intensity of extreme precipitation events, significantly influencing the spatial and temporal distributions of water resources. This is particularly evident in Texas, a rapidly growing state with a pronounced west-east gradient in water supply. This study utilizes Coupled Model Intercomparison Project Phase 6 (CMIP6) data and data-driven methodology to improve projections of Texas\u27s future water resources, focusing on actual evapotranspiration (AET) and water availability through enhanced Multi-Model Ensembles. The results reveal that the data-driven model significantly outperforms the CMIP5 and CMIP6 models across all skill metrics, underscoring the potential of data-driven methodologies in advancing climate science. Furthermore, the study provides an in-depth analysis of the projected changes in net water availability (NWA) and estimated water demand for different regions in Texas over the next six decades from 2015 to 2074, which reveal fluctuating patterns of water stress, with the regions (nine out of sixteen water planning regions in Texas, especially for the most populated regions) poised for heightened challenges in reconciling water demand and availability. While increasing trends are found in precipitation, AET, and NWA for the northern region of Texas based on SSP2–4.5, decreasing trends are found over the southern region for all three parameters based on SSP5–8.5. These findings underscore the importance of factoring both spatial and temporal variations in water availability and demand for effective water management strategies and the need for adaptive water management strategies for the changing water availability scenarios

    C Terminus of Hsc70-interacting Protein Promotes Smooth Muscle Cell Proliferation and Survival through Ubiquitin-mediated Degradation of FoxO1

    Get PDF
    Forkhead transcription factors (FoxOs) play a pivotal role in controlling cellular proliferation and survival. The cellular level of these factors is tightly regulated through the phosphoinositide 3-kinase/Akt and ubiquitin-mediated degradation. However, the ubiquitin ligases responsible for the degradation of FoxO1 and the relevance of this regulation to smooth muscle cell (SMC) proliferation and survival have not been fully identified. Here we showed that overexpression of C terminus of Hsc70-interacting protein (CHIP) promoted ubiquitination and degradation of FoxO1 in SMCs in response to tumor necrosis factor-α. Both the U-box (containing ubiquitin ligase activity) and the charged (essential for FoxO1 binding) domains within CHIP were required for CHIP-mediated FoxO1 down-regulation. Moreover, interaction and ubiquitination of FoxO1 by CHIP depended on phos pho ryl a tion of FoxO1 at Ser-256. Furthermore, overexpression of CHIP repressed FoxO1-mediated transactivation and its proapo pto tic function following tumor necrosis factor-α treatment. In contrast, knockdown of CHIP by small interfering RNA enhanced FoxO1-mediated transactivation and its effect on SMC proliferation and survival. Taken together, our data indicate that CHIP is a negative regulator of FoxO1 activity through ubiquitin-mediated degradation, and inhibition of CHIP may serve as a potential therapeutic target for reducing proliferative arterial diseases

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
    corecore